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1. Introduction 
Recently, deep learning (DL) has been widely investigated for performance improvement of the 

conventional block-structured communication systems, i.e., the multiple-input and multiple-output 

(MIMO) detection [1], channel estimation [2], and channel decoding [3]. Besides, DL shows its 

potentials in joint optimization of communication blocks, regarding the channel estimation and 

detection [4] or in the task of encoding channel and source [5]. 

Utilization of DL in improving the communication blocks is a data-driven approach, since a DL 

model can learn directly on the provided data by optimizing a given end-to-end loss function without 

the need of ad-hocs. In view of this, a number of works have investigated a so-called end-to-end (E2E) 

learning communication system. It should be noted that the transmitters and receivers were considered 

as deep neural networks (DNNs), which play respectively the role of auto-encoders and auto-decoders 

[6] [9] The supervised learning was used to optimize the weights of the models, leading to the 

improvement of the end-to-end recovery accuracy [6]. It was proven that the performance of this method 

is performs as well as the traditional block-structured systems operating with additive white Gaussian 

noise (AWGN) channel. Additionally, the method was developed to counteract hardware imperfection 

[8], or to boost the orthogonal frequency-division multiplexing (OFDM) systems [9]. Additionally, 
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 Deep learning utilization to optimize block-structured communication 

systems has attracted tremendous attention from researchers. Nevertheless, 

owing to the extensive data transmission between the transmitter and the 

receiver, communication, in this case, is hard to establish and maintain 

effectively. As a solution for this, we first investigate typical end-to-end 

learning for communication system, Generative Adversarial Network 

(GAN). Then, two problems associated with GAN-based systems, the 

gradient vanishing and overfitting, are reviewed. Subsequently, a residual 

aided GAN (RA-GAN) is proposed as means to overcome these problems. 

In the proposed learning scheme, the residual learning and the 

regularization method are used to mitigate the gradient vanishing and over-

fitting problems.  In the proposed learning scheme, the residual learning 

and the regularization method are used to mitigate the gradient vanishing 

and over-fitting problems. Finally, the numerical results performed in 

MATLAB for simulation and Codelabs for training have proven that the 

RA-GAN scheme has near-optimal performance and outperforms the 

conventional GAN scheme. Throughout this case study, readers can 

understand the issues that would occur when deep learning is applied to a 

communication system and possible approaches to address them.  
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authors in [7] proposed a novel hybrid approach where supervised training and reinforcement learning 

are applied respectively on the receiver and transmitter. 

Notably, the above works consider solely the most undemanding AWGN channel case, and the 

systems were already burdened with the substantial amount of data transmission between the receiver 

and the transmitter. To overcome this issue, a number of channel imitation-based schemes utilizing 

Deep Learning (DL) were introduced [10] [11] [12], in which addition modules used to imitate the 

channels in practice are installed. Particularly, DL models can imitate any arbitrary functions with the 

help of Deep Neural Network (DNN). It is highly capable of solving large-scale and complex problems 

[13]. DNN can either serve as a separate signal processing module or be implemented in an existing 

module to improve its performance [14] [15] [16]. Additionally, it can be used instead of a complex 

transceiver to remove the hardware burden when the designers attempt to optimize the global 

performance of wireless networks from the end-to-end (E2E) viewpoint [17]. 

The received signal was imitated with a generative adversarial network (GAN) in [18]. Gan has two 

components, which are the generator and the discriminator deployed in the framework of multi-layer 

DNNs. During the DNNs training, a fake received signal imitating the real received signal is generated 

by the generator to establish and maintain the training process for the transmitter. Meanwhile, the 

discriminator trains the generator to ensure that the signal it generates is as close as possible to the real 

signal. Thereby, the bridge for the standard propagation (BP) for gradient calculation for the transmitter 

is built. Papers [19] [20] [21] [22] [23] have shown that any arbitrary channel can be imitated with this 

method, and the hardware complexity of the transceiver can be significantly reduced. However, there are 

two drawbacks with the method, being the possible gradient vanishing problem with multi-layer 

generator and the over-fitting problem during iterative training. These problems affect the imitation 

accuracy of the GAN, which leads to the degrade of the E2E learning, thus the system performance [24]. 

A wireless system is fundamentally divided into different modules, i.e., source and channel 

encoder/decoder, (de)modulator, etc. [17]. Therefore, the nonlinear behavior of the system cannot be 

simply expressed using mathematics and optimizing the individual modules does not guarantee the 

optimization of the global system [25]. It was proven in [26] that designing modulation and coding 

separately is sub-optimal and the same principle is applied to designing other components as well, which 

hinders the global optimization of conventional wireless networks. Thus, there is a need to change the 

design paradigm with other approaches. 

One of the approaches to optimize the communication system is to utilize end-to-end (E2E) learning. 

However, an E2E learning communication system only be trained via BP with known channel [3]. Thus, 

it is necessary to deploy GAN, which is capable of imitating any arbitrary channel and reduce effectively 

the complexity of transceiver’s  hardware [27] [28] [29]. The GAN system faces its inherent problems 

being gradient vanishing (when calculation is passed through the multi-layer NN structures) and 

overfitting (when attempting to optimize several modules and their weights at once). The two problems 

will cause the downgrade of the system performance.   

As a solution, we propose in this paper a so-called residual aided GAN (RA-GAN) scheme, in which 

generator’s structure is modified with the residual neural network (Resnet) studied in [30]. Instead of 

generating the received signal in GAN, the generator in RA-GAN generates the difference between the 

signal that the system transmits and receives. Specifically, instead of the layer-by-layer, a skip connection 

is deployed so that in the generator, the input layers and output layers are connected. Moreover, the loss 

function is changed in RA-GAN so as to mitigate the over-fitting issue in GAN by adding a regularizer. 

The benefits of such modifications are presented as the contributions of the study: 

• Generator’s structure in the conventional GAN-based system is modified using Resnet to counter 

the gradient vanishing and overfitting problems.  

• By employing a skip connection to link the the input and output, it is possible to produce extra 

gradient (difference between the signals that the system transmits and receives), as a counteraction 

to the gradient vanishing issue. By adding a regularizer in the loss function in RA-GAN, which is 
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not computationally complex, the representation ability of the training scheme is limited so that 

the over-fitting issue can be mitigated. 

• In comparison with the GAN scheme, the fake signal that RA-GAN generates is closer to the real 

received signal, proving that the proposed residual generator we propose outperforms the 

conventional one; 

Following the Introduction in Section I. The method for GAN and RA-GAN training schemes of 

an E2E learning communication system is reported in Section II. Section III reports the simulation 

results. Eventually, the paper is concluded in Section IV. 

2. Method 
Fig.1 illustrates a structure of an E2E learning communication system which have three components: 

the transmitter Τ,  inter-mediate channel n, and receiver R. Two multi-layer NNs T and R are deployed 

respectively with trainable weights of  θT and θR. At first, a piece of information x input to T  is mapped 

to a one-hot vector 1m. Notably, 1m is a M-dimensional vector taken from M. In this set, the m-th 

element is 1, and the rest M-1 are 0.  

 

Fig. 1.  Deep learning applied on the architecture of E2E learning  

As a next step, 𝑇𝑇 is deployed as a function 𝑓𝑓θ𝑇𝑇:ℳ ↦ 𝐶𝐶𝑛𝑛 to map the one-hot vector 𝟏𝟏𝑚𝑚 to the signal 

𝒙𝒙 ∈ 𝐶𝐶𝑛𝑛 so that it can be sent via 𝑛𝑛 channels. Similarly, 𝑅𝑅 is a function 𝑓𝑓θ𝑅𝑅:𝐶𝐶𝑛𝑛 ↦
�𝒑𝒑 ∈ 𝑅𝑅+𝑀𝑀 ∣∣ ∑ 𝒑𝒑𝑖𝑖𝑀𝑀

𝑖𝑖=1 = 1 �, which is used to map the received signal 𝒚𝒚 ∈ 𝐶𝐶𝑛𝑛 to a probability vector 𝒑𝒑 ∈
𝑅𝑅+𝑀𝑀. Subsequently, we obtain the final decision 𝑥𝑥�, corresponding to the input 𝟏𝟏𝑚𝑚� , with 𝑚𝑚�  being the 

maximum value in the probability vector 𝒑𝒑. It should be noted that the 𝑇𝑇's hardware defines the power 

constraint put on signal 𝒙𝒙, that is, |𝒙𝒙|2 = 1. The final aim is to retrieve 𝟏𝟏𝑚𝑚 so that it can be as accurate 

as possible to the signal the system receives. 

𝑦𝑦 = 𝜅𝜅𝑥𝑥 + 𝜈𝜈  (1) 

where 𝜅𝜅 𝜖𝜖 𝐶𝐶  and 𝜈𝜈 𝜖𝜖 𝐶𝐶𝑛𝑛 are respectively the channel and Gaussian noise. The standard complex Gaussian 

distribution whose mean and variance are 𝒞𝒞𝒞𝒞(0,1). We use a loss function following [9] to compare 

𝟏𝟏𝑚𝑚 that is transmitted and the recovered 𝒑𝒑: 

ℒ(𝜃𝜃𝑇𝑇 ,  𝜃𝜃𝑅𝑅,  𝜅𝜅) ≜ 𝐸𝐸 �∫ 𝑙𝑙�𝑓𝑓𝜃𝜃𝑅𝑅(𝑦𝑦),𝟏𝟏𝑚𝑚� 𝒑𝒑𝜅𝜅 � 𝑦𝑦 ∣∣ 𝑓𝑓𝜃𝜃𝑇𝑇(𝟏𝟏𝑚𝑚) � 𝑑𝑑𝑦𝑦� ≈   1
𝐵𝐵
  ∑ 𝑙𝑙�𝑓𝑓𝜃𝜃𝑅𝑅�𝑦𝑦

(𝑖𝑖)�,  𝟏𝟏𝑚𝑚(𝑖𝑖)�,𝐵𝐵
𝑖𝑖=1  (2) 

𝑙𝑙(𝐩𝐩,𝟏𝟏𝑚𝑚) = −∑  𝑀𝑀
𝑖𝑖=1 (𝟏𝟏𝒎𝒎)𝑖𝑖ln 𝐩𝐩𝑖𝑖 + (1 − (𝟏𝟏𝑚𝑚)𝑖𝑖)ln (1 − 𝐩𝐩𝑖𝑖).  (3) 

To acquire the optimal weights θ𝑇𝑇∗  and θ𝑅𝑅∗  respectively for 𝑇𝑇 and 𝑅𝑅, we apply a back propagation 

(BP) algorithm on the loss function ℒ(θ𝑇𝑇 , θ𝑅𝑅 , 𝜅𝜅) in (2) to calculate the gradient. Nonetheless, in (2), 

we can only update θ𝑅𝑅 with the below gradient: 
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∇θ𝑅𝑅ℒ̃(θ𝑅𝑅) = 1
𝐵𝐵
∑ ∇θ𝑅𝑅𝑙𝑙�𝑓𝑓θ𝑅𝑅�𝑦𝑦

(𝑖𝑖)�,𝟏𝟏𝑚𝑚
(𝑖𝑖)�𝐵𝐵

𝑖𝑖=1 ,    (4) 

 where there is the loss function approximation ℒ̃, derived from (2). For functions 𝑓𝑓𝑥𝑥 ∈ ℝ𝑛𝑛
 and 𝑓𝑓𝑦𝑦 ∈

ℝ𝑘𝑘
 with variable we have their gradient matrices as 

∂𝑓𝑓𝑦𝑦
∂𝑓𝑓𝑥𝑥

∈ ℝ𝑘𝑘×𝑛𝑛, ∂𝑦𝑦
∂𝑥𝑥
∈ ℝ𝑚𝑚×𝑚𝑚, and ∇𝑥𝑥𝑓𝑓𝑥𝑥 ∈

ℝ𝑛𝑛×𝑚𝑚
. 

 So as to boost the performance of the system, we have to optimize θ𝑇𝑇 as well [2]. Nevertheless, the 

gradient ∇θ𝑇𝑇ℒ̃ cannot be obtained as proven in [4] , because the backpropagation process is obstructed 

with the unknown channel 𝜅𝜅 as follows: 

∇𝜃𝜃𝑇𝑇ℒ̃(𝜃𝜃𝑇𝑇) = 1
𝐵𝐵
∑  𝐵𝐵
𝑖𝑖=1 ∇𝜃𝜃𝑇𝑇𝑙𝑙�𝑓𝑓𝜃𝜃𝑇𝑇�𝐲𝐲

(𝑖𝑖)�,𝟏𝟏𝑚𝑚
(𝑖𝑖)� = 1

𝐵𝐵
∑  𝐵𝐵
𝑖𝑖=1

∂𝑙𝑙
∂𝑓𝑓𝜃𝜃𝑅𝑅

∂𝒇𝒇𝜃𝜃𝑅𝑅
∂𝐲𝐲(𝑖𝑖)

∂𝐲𝐲(𝑖𝑖)

∂𝒙𝒙(𝑖𝑖) ∇𝜃𝜃𝑇𝑇𝒇𝒇𝜃𝜃𝑇𝑇�𝟏𝟏𝑚𝑚
(𝑖𝑖)�

= 1
𝐵𝐵
∑  𝐵𝐵
𝑖𝑖=1 𝜅𝜅

∂𝑙𝑙
∂𝑓𝑓𝜃𝜃𝑅𝑅

∂𝒇𝒇𝜃𝜃𝑅𝑅
∂𝐲𝐲(𝑖𝑖) 𝐈𝐈𝐧𝐧∇𝜃𝜃𝐓𝐓𝒇𝒇𝜃𝜃𝐓𝐓�𝟏𝟏m

(𝑖𝑖)�,  (5) 

where the identity matrix of size  is  

2.1. Generative Adversarial Network scheme (GAN) 
To overcome this, a GAN illustrated in Fig. 2 was used for generation of surrogate gradient to 

subsequently update θ𝑇𝑇 [19]. 

 

Fig. 2.  The scheme of GAN with multi-layer NN generator and discriminator 

In general, a GAN includes a generator 𝑮𝑮 connected to a multi-layer NN discriminator 𝐷𝐷. Both are 

with trainable weights respectively symbolized with θ𝐺𝐺  and  θ𝐷𝐷 .  We use 𝑮𝑮: 𝑓𝑓θ𝐺𝐺:𝐶𝐶𝑛𝑛 ↦ 𝐶𝐶𝑛𝑛 to produce 

fake received signal 𝑦𝑦� in accordance with the transmitted signal 𝑥𝑥 and random noise 𝑧𝑧 obtained from 

the standard Gaussian distribution. For simplification, in 𝑮𝑮, we consider 𝑧𝑧 as a built-in variable. 

Meanwhile, the discriminator 𝑓𝑓θ𝐷𝐷:𝐶𝐶𝑛𝑛 ↦ (0,1) is deployed for training 𝑮𝑮 to ensure that the difference 

between the fake signal and real received signal is minimal. 

On the other hand, 𝐷𝐷 is used to recognize the real from the fake signal it receives. Specifically, if the 

input to 𝐷𝐷 is from the real with signal distribution of  𝒑𝒑𝜅𝜅(𝑦𝑦 ∣∣ 𝑥𝑥 ), output of  𝐷𝐷 will be 1. Contrarily, 

the output is expected to be 0 for the fake received signal distribution 𝒑𝒑 𝜅𝜅� (𝑦𝑦� ∣∣ 𝑥𝑥 ).  

As for 𝑮𝑮, to ensure the real and the fake received signals are similar, it has to adjust its own output 

𝒚𝒚 � so that after inputting into 𝐷𝐷, the output of 𝐷𝐷 𝑓𝑓𝜃𝜃𝐷𝐷(𝒚𝒚�) is made as close to 1 as possible.  

With regard to the GAN's procedure, it is possible to update the weights 𝜃𝜃𝐷𝐷 of 𝑮𝑮 as per the loss 

function of the real received input 𝑦𝑦 as follows: 
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ℒ̃(𝜃𝜃𝐷𝐷) = 1
𝐵𝐵
∑ 𝑙𝑙�𝑓𝑓𝜃𝜃𝐷𝐷�𝐲𝐲

(𝒊𝒊)�, 1� �𝑙𝑙 + 𝑓𝑓𝜃𝜃𝐷𝐷 ��𝐲𝐲�
(𝑖𝑖)�, 0��𝐵𝐵

𝑖𝑖=1     (6) 

Correspondingly, the weights θ𝐺𝐺 of  𝐷𝐷 is alternately updated as per the loss function of the fake 

received input 𝑦𝑦� with: 

ℒ̃(𝜃𝜃𝐺𝐺) = 1
𝐵𝐵
∑ 𝑙𝑙 �𝑓𝑓𝜃𝜃𝐷𝐷 �𝑓𝑓𝜃𝜃𝐺𝐺�𝒙𝒙

(𝒊𝒊)�� , 1�𝐵𝐵
𝑖𝑖=1 .  (7) 

Consequently, we can calculate the gradients with ∇𝜃𝜃𝐺𝐺ℒ(𝜃𝜃𝐺𝐺) and ∇𝜃𝜃𝐷𝐷ℒ(𝜃𝜃𝐷𝐷). The loss functions (6) 

and (7) can be minimized with the Adam gradient descent algorithm in [27], [28] and [29]. Because we 

can train 𝑮𝑮 to reproduce the real received signal, we have to ensure that the surrogate gradient is the 

closest to the gradient (5) and it can be passed back through with: 

∇𝜃𝜃𝑇𝑇ℒ̃(𝜃𝜃𝑇𝑇) = 1
𝐵𝐵
∑  𝐵𝐵
𝑖𝑖=1 ∇𝜃𝜃𝑇𝑇𝑙𝑙 �𝑓𝑓𝜃𝜃𝑅𝑅 �𝑓𝑓𝜃𝜃𝐺𝐺 �𝑓𝑓𝜃𝜃𝑇𝑇�𝟏𝟏𝑚𝑚

(𝑖𝑖)��� ,𝟏𝟏𝑚𝑚
(𝑖𝑖)�  = 1

𝐵𝐵
ℐ1.  (8) 

where ℐ1 = ∑ ∂l
∂𝑓𝑓θ𝑅𝑅

∂𝑓𝑓θ𝑅𝑅
∂𝑓𝑓θ𝐺𝐺

∂𝑓𝑓θ𝐺𝐺
∂𝑓𝑓θ𝑇𝑇

∇θ𝑇𝑇
𝐵𝐵
𝑖𝑖=1 𝑓𝑓θ𝑇𝑇�𝟏𝟏𝑚𝑚

(𝑖𝑖)�.  (9) 

However, as mentioned in [24], the training instability will limit the performance of GAN, resulting 

in the dramatic downgrade of the whole system. As aforementioned, the causes for this are gradient 

vanishing and over-fitting and would be addressed with a proposed RA-GAN training scheme. 

2.2. Ra-gan scheme 
Because of the existence of unknown channel, training the transmitter 𝑇𝑇 is a demanding task. As per 

the GAN training scheme, we can obtain a surrogate gradient using (8) to update 𝑇𝑇. Nonetheless, the 

𝑮𝑮 output distribution 𝒑𝒑𝜅𝜅�(𝑦𝑦� ∣∣ 𝑥𝑥 ) varies much from 𝒑𝒑𝜅𝜅(𝑦𝑦 ∣∣ 𝑥𝑥 ) owing to the problems of gradient 

vanishing and over-fitting, leading to the proposal of RA-GAN training scheme. 

2.2.1. Residual learning to alleviate the gradient vanishing issue  
For the traditional GAN, the variables are fed forward through layers and eventually output as fake 

samples by the multi-layer 𝑮𝑮.  However, if there are more layers in 𝑮𝑮, the gradient would become 

significantly small because it has been multiplied by the partial derivatives of loss functions when it is 

passed through the layers in the BP algorithm. If the case the partial derivative is near to 0, it will result 

in the vanish of the gradient, causing problems to the training process of 𝑮𝑮. With inspiration taken from 

the residual learning in [20], a connection to keep the in-between layers that links the input and the 

output of 𝑮𝑮 is designed. Correspondingly, the residual generating function 𝑓𝑓𝜃𝜃𝐺𝐺𝑅𝑅:𝐶𝐶𝑛𝑛 ↦ 𝐶𝐶𝑛𝑛 could be 

formulated as: 

𝑓𝑓𝜃𝜃𝐺𝐺𝑅𝑅(𝒙𝒙) = 𝐲𝐲� − 𝒙𝒙 = 𝑓𝑓𝜃𝜃𝐺𝐺(𝒙𝒙) − 𝒙𝒙,  (10) 

where the transmitted and the generated signals are respectively denoted as 𝒙𝒙 and 𝒚𝒚�, respectively. 

Additionally, the residual generator 𝑓𝑓θ𝐺𝐺𝑅𝑅(𝒙𝒙) is implemented to distinguish the transmitted from the 

received signals according to the conditional input 𝒙𝒙.  

Then, we can calculate the gradient for updating weights of the 𝑇𝑇 in the RA-GAN scheme as: 

∇θ𝑇𝑇ℒ̃(θ𝑇𝑇)  = 1
𝐵𝐵
∑ ∂𝑙𝑙

∂𝒇𝒇θ𝑅𝑅

∂𝒇𝒇θ𝑅𝑅
∂𝒇𝒇θ𝐺𝐺

∂𝒇𝒇θ𝐺𝐺
∂𝒇𝒇θ𝑇𝑇

∇θ𝑇𝑇𝑓𝑓θ𝑇𝑇�𝟏𝟏𝑚𝑚(𝑖𝑖)�𝐵𝐵
𝑖𝑖=1 = 1

𝐵𝐵
(ℐ2 + ℐ3),  (11) 

where ℐ2 = ∑ ∂l
∂𝑓𝑓θ𝑅𝑅

∂𝑓𝑓θ𝑅𝑅
∂𝑓𝑓θ𝐺𝐺

∇θ𝑇𝑇𝑓𝑓θ𝑇𝑇�𝟏𝟏𝑚𝑚(𝒊𝒊)�𝐵𝐵
𝑖𝑖=1  and ℐ3 = ∑ ∂l

∂𝑓𝑓θ𝑅𝑅

∂𝑓𝑓θ𝑅𝑅
∂𝑓𝑓θ𝐺𝐺

∂𝑓𝑓θ𝐺𝐺
𝑅𝑅

∂𝑓𝑓θ𝑇𝑇
∇θ𝑇𝑇𝑓𝑓θ𝑇𝑇�𝟏𝟏𝑚𝑚(𝒊𝒊)�𝐵𝐵

𝑖𝑖=1  (12) 

2.2.2. Regularization method to mitigate overfitting 
The loss function is reconstructed to overcome the over-fitting problem in the E2E learning of the 

system. As aforementioned, when 𝐺𝐺 and D are added in GAN for training purposes, we can witness the 

significant increase of additional trainable weights, leading to the over-growing representation ability 
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thus the over-fitting problem. To mitigate this, a so-called regularizer can be added to the loss function. 

Being different from the GAN, this regularizer allows the RA-GAN scheme to recover the real signal it 

receives with the help of regularization method. In particular, for the representation ability restriction, 

we would need to add a weight Ω(θ) for penalty into the loss function of the RA-GAN scheme: 

ℒ̂(𝜃𝜃𝑖𝑖) = ℒ̃(𝜃𝜃𝑖𝑖) + 𝜆𝜆Ω(𝜃𝜃𝑖𝑖), 𝑖𝑖 ∈ {𝑅𝑅,𝑇𝑇,𝐺𝐺,𝐷𝐷} ,  (13) 

where the loss function that we reconstructed and original loss function are respectively denoted as ℒ̂(θ𝑖𝑖) 

and ℒ̃(θ𝑖𝑖). In addition, there is a hyper-parameter λ deployed to balance Ω(θ) and ℒ̃(θ𝑖𝑖).  

Fig. 3 depicts the algorithm RA-GAN E2E training schemes. The inputs are iterations number, 

Epoch, and real channel dataset as inputs, from which the weights of the trained T and R, θ𝑇𝑇 and θ𝑅𝑅, 

are output. 

 

Fig. 3.  Algorithm RA-GAN E2E training schemes. 
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The process is separated to three primary steps: 1. Initializing weights; 2. Generating fake signal and 

real signal; 3. Training the network weights iteratively. It is worth noting that iterative training is applied 

for T, R, G, and D in this system. It means that the change in parameters of a module does not lead to 

the changes of other modules unless it is converged. Additionally, the actual signal transmission is only 

completed once the parameters of T and R are returned. 

3. Results and Discussion 
Here, we presents the performance analysis of the RA-GAN scheme in AWGN channel. To evaluate 

the ability to transmit the data, we focus on the block error rate (BLER). Followingly, we compare the 

RA-GAN and the conventional GAN scheme in [19], while considering the training method, which has 

the known channel, as the optimal performance bound.  

Specifically, for the optimal case, 𝑇𝑇 is assumed to know the real channel, making the gradient ∇θ𝑇𝑇ℒ̃ 

available for 𝑇𝑇 training in (10). Moreover, the ability to generate fake received signals of the RA-GAN 

and the conventional GAN is compared. The simulation parameters are 𝑀𝑀 = 16,𝑛𝑛 = 7, B =
320,𝑁𝑁

train 

= 10000, λ = 0.01, δ2 = � 𝑁𝑁0𝑛𝑛
2𝐸𝐸𝑏𝑏 log2 𝑀𝑀

� in [2]. The simulations are conducted in Matlab 

with the formulations that are derived previously in this paper. 

We used a dataset of 100.000 one-hot vectors that are randomized to validate the BLER performance 

of the system trained with SNR = 5(𝑑𝑑𝑑𝑑). As can be observed in Fig. 4, the GAN-based [19] performs 

significantly worse than the optimal case (with known channel), owing to the aforementioned gradient 

vanishing and over-fitting problems happen during GAN training. On the other hand, the RA-GAN 

scheme is almost identical to the optimal training method. This shows how effectively the existing 

problems of GAN system is mitigated by employing the skip connection in the generator and regularizer 

as a part of the loss function. 

 

Fig. 4.  BLER performance comparison GAN and RA-GAN vs SNR(dB) 

In Fig. 5 and Fig. 6, we plotted the results from the loss functions in relation with the training epoch 

in AWGN channel with SNR = 5(𝑑𝑑𝑑𝑑). In Fig. 5, we can see that the GAN scheme cannot converge 

while the RA-GAN one in Fig. 6 can. It should be noted that during the training process, owing to the 

training randomness, some bad points would exist, however, they could be recovered in the next epoch. 

Therefore, it can be concluded that the RA-GAN scheme is able to generate signals that are better fit 
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to the real received one. In other words, the trained residual 𝑮𝑮 outperforms the conventional 𝑮𝑮 in terms 

of generation performance. 

 

Fig. 5. The original loss function ℒ̃(θ𝑅𝑅) and ℒ̃(θ𝑇𝑇) for GAN schemes 

 

Fig. 6. The reconstructed loss function ℒ̂(𝜃𝜃𝑅𝑅), ℒ̂(𝜃𝜃𝑇𝑇) for RA-GAN schemes. 

From the results, it can be observed that the proposed RA-GAN-based system performs remarkably 

better than the conventional GAN. This is proven as well from the sensitivity analysis that is conducted. 

Future works can consider different datasets to assess how consistent the RA-GAN scheme is. Moreover, 

it is suggested to investigate different deep learning neural networks such as the deep ensemble learning 

[31], and compare their performance to the basic GAN and RA-GAN in this paper. Besides, broader 

and more comprehensive view on the application of DL in the wireless networks from both the software 

and hardware perspectives [32] can be an inspiration for the future research interests. 
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4. Conclusion 
Firstly, the definition of E2E learning system is introduced together with its challenges, one of which 

is that the transmitter of the system can only be trained with known channel. Based on that, we improve 

the GAN scheme to a so-called RA-GA scheme. The two primary problems associated with the 

conventional GAN being the gradient vanishing and over-fitting were solved as RA-GAN delivers more 

robust, powerful gradients (by skipping connection between the input and output of the generator) and 

helps to control the representation ability (by added the Regularizer to the loss function). In terms of 

the BLER, the simulation result shows that the RA-GAN performs comparatively well as the optimal 

method, which outperforms the conventional GAN. 
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